2022-03-29 16:13:08 甘肅公考考試網 //www.naichajmpt.cn/gwy/
關注公眾號領資料
QQ備考群
APP刷題
文章來源:甘肅人事考試網
在公務員考試行測中,數量關系往往是令大多數考生頭疼的一個部分,在大部分的情況下都是做不完的題型狀態,但要想拿高分又不能放棄數量,所以我們需要在較短時間內盡可能多的做出幾道較簡單的數量題目。那么什么樣的題目會比較簡單呢?接下來天津華圖教育為大家介紹一種簡單的排隊取水問題。
什么是排隊取水問題
已知幾個人到水龍頭取水的時間不同,問這幾個人取水時間加等待時間最短是多久?
排隊取水問題的解題原則
讓取水時間短的優先取水。
示例1
有甲、乙、丙、丁4人去水房打水,四人打水所需的時間分別為2、5、8、10分鐘,若只有一個水龍頭,要想4人打水和等待的時間之和最短,則最短時間為多少?
A.46 B.47 C.48 D.49
【答案】D。華圖解析:由問題可知,要求4人打水和等待的時間之和最短。首先,4個人打水的總時間是不變的,共2+5+8+10=25分鐘,所以只需讓等待時間最短即可。而等待的總時間會隨著先后安排的人員順序的改變而變化,如果想要讓等待的總時間最短,就需要讓打水時間最短的人先打,打水時間長的后打。由此可得出按照甲、乙、丙、丁的順序打水才能讓總時間最短。甲先打2分鐘,其他三人一共等待了3×2=6分鐘;乙打水5分鐘,剩下兩人共等待了2×5=10分鐘;丙打水8分鐘,剩下一人共等待了1×8=8分鐘。因此打水和等待時間之和最短為:25+6+10+8=49分鐘。以上是將打水時間和等待時間分開計算再進行相加,但如果我們將打水和等待時間進行綜合,即可直接列式為4×2+3×5+2×8+1×10=49分鐘。
方法總結:第一步,確定打水順序,讓打水時間短的人先打,打水時間長的人后打;第二步,計算最短時間為n×a+(n-1)×b+(n-2)×c+……,(打水時間a
現在我們掌握了只有一個水龍頭時排隊取水問題的規律,那如果有多個水龍頭又該如何解決呢?接下來我們再看下一道題。
示例2
7輛車要維修,一名工人修這7輛車分別需要12,17,8,18,23,30,14分鐘,每輛車停開1分鐘,經濟損失11元,F由3名工效相同的維修工人各自單獨工作,要使經濟損失最小,至少要損失多少元?
A.1991 B.1178 C.619 D.181
【答案】A。華圖解析:這個題目雖然不是描述排隊取水,但由問題可知,要使經濟損失最小,就要使總停產時間盡可能縮短,而停產時間由維修時間和車輛等待時間組成,7輛車總維修時間是不變的,所以只需讓車輛等待時間最短即可。其實我們會發現,這里的維修時間就相當于“取水時間”,車輛等待時間就相當于“排隊等待時間”,而工人就相當于“水龍頭”。所以這個題目可以按照排隊取水問題的規律解題。要想使車輛等待時間最短,顯然應先修理修復時間短的車輛。由于三名維修工的效率相同,對每一個工人來說都應該是安排時間短的先維修,具體安排如下圖所示(假設用ABCDEFG按照維修時間從少到多來表示這7輛車):
我們將維修和等待時間進行綜合后可得到,最短時間列式即為3×8+2×17+1×30+2×12+1×18+2×14+1×23=181分鐘,至少要損失181×11=1991元。
通過第二題可以發現,當出現多個“水龍頭”時,我們的解題原則與一個水龍頭是相同的,最后把各個水龍頭時間相加即可。對于這種具有明顯模型的題目,只要我們理解了基本原則就可以快速的解決這一類問題。